设为首页加入收藏网站地图 中文ENGLISH
通知信息
当前位置: 首页 >> 学术信息 >> 正文

关于举办王晗丁教授、唐旭博士学术报告的通知

发布时间:2018年09月07日 11时34分08秒  浏览次数:

各部门、各单位:

应我校通信与信息工程学院的邀请,西安电子科技大学王晗丁教授、唐旭博士将于913日来我校做专题学术讲座,欢迎广大师生参加!报告的具体安排如下:

报告时间:2018913(星期四)15:0017:00

报告地点:长安校区通院大楼106室。

报告 一Offline and OnlineData-Driven Evolutionary Optimization(王晗丁 教授)15:00-16:00

摘要:很多工业界实际问题可建模成黑盒优化问题,优化方法需多次评价候选解,但是实际问题函数评价的运算代价高或存在多个精度,这阻碍了已有优化方法的垂直应用。数据驱动的优化方法是新兴的人工智能方法论,以进化计算为优化方法,将实际问题函数评价看作数据,利用已有成熟的机器学习算法训练得到近似的函数评价来辅助优化方法进行搜索,大大提高了传统优化算法实用性。

报告人简介:王晗丁,西安电子科技大学电子工程学院博士,现为西安电子科技大学人工智能学院教授,博士生导师,英国萨里大学计算机系研究员。2018年入选陕西省青年千人计划。研究方向包括计算智能、机器学习、多目标优化及代理模型。

近五年发表高水平论文24篇,其中以第一作者/通讯作者发表JCR一区8篇,JCR二区2篇,包括计算智能领域国际顶级期刊 《 IEEETrans.onEvolutionary Computation》、《IEEETrans.onCybernetics》、《EvolutionaryComputation》和《 InformationSciences 》,且其中一篇入选 IEEEComputationalIntelligence Society当季Spotlight文章。

在海外研究期间,作为主研身份参与1项英国工程与物理科学研究资助局 ( EPSRC )项目《 Data-drivensurrogate-assistedevolutionaryfluid dynamic   optimization》。

王晗丁教授是国际计算智能研究领域非常活跃的年轻学者。现担任IEEE计算智能协会演化计算技术委员会 (IntelligentSystemsApplicationsTechnical CommitteeofIEEEComputationalIntelligenceSocietyTaskForce13主席。兼职计算智能国际期刊《IEEEComputationIntelligenceMagazine》和模式识别国际期刊《Complex&IntelligentSystems》编委(AssociateEditor)。曾担任神经计算领域国际知名期刊《Neurocomputing》、《IEEETransactionsonEmergingTopics inComputationalIntelligence》与《IEEEAccess》客座编委(GuestEditor),并担任演化计算领域顶级国际会议 《 GeneticandEvolutionaryComputation     Conference》、《IEEECongressofEvolutionaryComputation》及多个其他国际会议的程序委员会成员。长期担任计算智能领域多个国际顶级期刊审稿人。

报 告 二:Unsupervised DeepFeature Learning for Remote Sensing Image Retrieval(唐旭 博士)16:00-17:00

摘要:Due to the specificcharacteristics and complicated contents of remote sensing (RS) images, remotesensing image retrieval (RSIR) is always an open and tough research topic inthe RS community. There are two basic blocks in RSIR, including featurelearning and similarity matching. In this paper, we focus on developing aneffective feature learning method for RSIR. With the help of the deep learningtechnique, the proposed feature learning method is designed under thebag-of-words (BOW) paradigm. Thus, we name the obtained feature deep BOW(DBOW). The learning process consists of two parts, including image descriptorlearning and feature construction. First, to explore the complex contentswithin the RS image, we extract the image descriptor in the image patch levelrather than the whole image. In addition, instead of using the handcraftedfeature to describe the patches, we propose the deep convolutional auto-encoder(DCAE) model to deeply learn the discriminative descriptor for the RS image.Second, the k-means algorithm is selected to generate the codebook using theobtained deep descriptors. Then, the final histogrammic DBOW features areacquired by counting the frequency of the single code word. When we get theDBOW features from the RS images, the similarities between RS images aremeasured using L1-norm distance. Then, the retrieval results can be acquiredaccording to the similarity order. The encouraging experimental results countedon four public RS image archives demonstrate that our DBOW feature is effectivefor the RSIR task. Compared with the existing RS image features, our DBOW canachieve improved behavior on RSIR.

报告人简介:Xu Tang (S13) receivedthe B.S., M.S., and Doctor Degrees from Xidian University, Xian, China, in 2007, 2010 and 2017, respectively. Now, he iscurrently a member of the Key Laboratory of Intelligent Perception and ImageUnderstanding, Ministry of Education, Xidian University. His current researchinterests include remote sensing image processing, remote sensing imagecontent-based retrieval and reranking.

特此通知。

 

                                        科研处

                                   通信与信息工程学院

                     201897 

 

上一条:关于举办于书林教授学术讲座的通知

下一条:关于举办刘剑副研究员学术报告的通知-2018西邮学术讲座第六十八讲

关闭页面

雁塔校区

电话:029-85383106

邮政编码:710061

雁塔校区地址:西安市长安南路563号

长安校区

电话:029-88166105

邮政编码:710121

长安校区地址:西安市长安区西长安街618号

版权所有:西安邮电大学 2011-2017 中国西安长安南路563号 陕ICP备040096号